skip to main content


Search for: All records

Creators/Authors contains: "Huang, Jingsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. As seen in experiments with poly(3‐hexylthiophene), substitution of hydrogen with deuterium on the main chain alone decreases crystallinity. To understand this effect, a general formalism for analysis of the dipole moments and polarizabilities incorporating quantum nuclei, is developed. The formalism, based on quantum dynamics of the proton/deuteron and on the perturbative analysis of the dipole interaction energy, accounts for the anharmonicity of a potential energy surface and for the anisotropy of molecular dipole moments. The formalism is implemented within the Discrete Variable Representation and the Density Functional Theory describing, respectively, the quantum proton/deuteron on the thiophene ring and the electronic structure of the 27‐atom model polymer chain, embedded into a larger crystalline environment. The isotope effect is mainly attributed to the differences in the zero‐point energy of the CH/CD bonds and to the isotope‐dependence of the dipole‐dipole inter‐chain interactions.

     
    more » « less
  3. Abstract

    Downscaling device dimensions to the nanometer range raises significant challenges to traditional device design, due to potential current leakage across nanoscale dimensions and the need to maintain reproducibility while dealing with atomic‐scale components. Here, negative differential resistance (NDR) devices based on atomically precise graphene nanoribbons are investigated. The computational evaluation of the traditional double‐barrier resonant‐tunneling diode NDR structure uncovers important issues at the atomic scale, concerning the need to minimize the tunneling current between the leads while achieving high peak current. A new device structure consisting of multiple short segments that enables high current by the alignment of electronic levels across the segments while enlarging the tunneling distance between the leads is proposed. The proposed structure can be built with atomic precision using a scanning tunneling microscope (STM) tip during an intermediate stage in the synthesis of an armchair nanoribbon. An experimental evaluation of the band alignment at the interfaces and an STM image of the fabricated active part of the device are also presented. This combined theoretical–experimental approach opens a new avenue for the design of nanoscale devices with atomic precision.

     
    more » « less